Approximate Bayesian Inference for Psychometric Functions using MCMC Sampling

نویسندگان

  • Malte Kuss
  • Frank Jäkel
  • Felix A. Wichmann
چکیده

In psychophysical studies the psychometric function is used to model the relation between the physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of different intensities. In this report we propose the use of Bayesian inference to extract the information contained in experimental data estimate the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition we discuss the parameterisation of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation. The appendix provides a description of an implementation for the R environment for statistical computing and provides the code for reproducing the results discussed in the experiment section.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bayesian inference for the M/G/1 queue with efficient MCMC sampling

We introduce an efficient MCMC sampling scheme to perform Bayesian inference in the M/G/1 queueing model given only observations of interdeparture times. Our MCMC scheme uses a combination of Gibbs sampling and simple Metropolis updates together with three novel “shift” and “scale” updates. We show that our novel updates improve the speed of sampling considerably, by factors of about 60 to abou...

متن کامل

Fast Bayesian whole-brain fMRI analysis with spatial 3D priors

Spatial whole-brain Bayesian modeling of task-related functional magnetic resonance imaging (fMRI) is a great computational challenge. Most of the currently proposed methods therefore do inference in subregions of the brain separately or do approximate inference without comparison to the true posterior distribution. A popular such method, which is now the standard method for Bayesian single sub...

متن کامل

Approximate Inference with Amortised MCMC

We propose a novel approximate inference framework that approximates a target distribution by amortising the dynamics of a user-selected Markov chain Monte Carlo (MCMC) sampler. The idea is to initialise MCMC using samples from an approximation network, apply the MCMC operator to improve these samples, and finally use the samples to update the approximation network thereby improving its quality...

متن کامل

Comments On`bayesian Backfitting' Bayesian Function Estimation

I warmly congratulate the authors on this paper. I am sure they will succeed in broadening acceptance of the Bayesian paradigm in inference in regression, by providing this well-written and accessible treatment of the use of Markov chain Monte Carlo (MCMC) in tting the important class of (generalised) additive models. The paper promotes several ideas. It can be interesting and revealing to exam...

متن کامل

Learning Deep Generative Models with Doubly Stochastic MCMC

We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models in the collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a minibatch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over latent variables via a Gibbs sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005